If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4000+2000/(1+x)+4000/(1+x)^2=0
Domain of the equation: (1+x)!=0
We move all terms containing x to the left, all other terms to the right
x!=-1
x∈R
Domain of the equation: (1+x)^2!=0We add all the numbers together, and all the variables
x∈R
2000/(x+1)+4000/(x+1)^2-4000=0
We calculate fractions
(2000*(x+1)^2)/((x+1)*(x+1)^2)+(4000x+4000)/((x+1)*(x+1)^2)-4000=0
We calculate terms in parentheses: +(2000*(x+1)^2)/((x+1)*(x+1)^2), so:
2000*(x+1)^2)/((x+1)*(x+1)^2
We multiply all the terms by the denominator
2000*(x+1)^2)
We multiply parentheses
2000x+
We add all the numbers together, and all the variables
2000x
Back to the equation:
+(2000x)
We calculate terms in parentheses: +(4000x+4000)/((x+1)*(x+1)^2), so:
4000x+4000)/((x+1)*(x+1)^2
We multiply all the terms by the denominator
4000x*((x+1)*(x+1)^2+4000)
Back to the equation:
+(4000x*((x+1)*(x+1)^2+4000))
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate terms in parentheses: +(4000x*((x+1)*(x+1)^2+4000)), so:
4000x*((x+1)*(x+1)^2+4000)
We calculate te
See similar equations:
| 18y+6=24y | | a×a×a=500 | | 2(x+1)-(x-1)=4 | | x×x×x=300 | | 2(x+1)-(x-1=4 | | x+x+x=300 | | 2x+50=5×-55 | | t+16=7 | | 7x+1=10x+5 | | 3x−11/2−4x−10/3+x−3/4=0 | | (15.2·0.25−48.51)÷14.7/x=((13/44−2/11−5/66÷(2+1/2))·(1+1/5))/(3.2+0.8·(5+1/2−3.25)) | | 7.4=−t3.5 | | (-10)+x+4-5=7x(-5) | | 3×(x-2)=4x+8 | | -0.6/y=2/3 | | 2x=3(2-x)+14 | | 7/12=n/84 | | 7x-16=5x-4 | | -4=6x-10 | | 15x=-3(x-10) | | 8x+-6x=-22 | | 7(x+1)=-13 | | 24x+38=x | | 5n-16=6n+9 | | 2x−31=−2x−3 | | 16.05-0.07(x+3)=16.55-0.14x | | 2(x-5)-x=3x-10 | | 3(x^2+4x-7)=0 | | 4-8x=67 | | 8x-30=4x | | 3a+2=6a-14 | | 5y−13=41 |